Automatisieren der Datenerfassung und -verarbeitung mithilfe von Azure Databricks
Databricks Jobs ist ein leistungsstarker Dienst, der die Automatisierung von Datenerfassungs- und Verarbeitungsworkflows ermöglicht. Es ermöglicht die Orchestrierung komplexer Datenpipelines, die Aufgaben wie das Erfassen von Rohdaten aus verschiedenen Quellen, das Transformieren dieser Daten mithilfe von Delta Live Tables und das Speichern in Delta Lake zur weiteren Analyse umfassen kann. Mit Azure Databricks können Benutzerinnen und Benutzer ihre Datenverarbeitungsaufgaben automatisch planen und ausführen, um sicherzustellen, dass Daten immer auf dem neuesten Stand sind und für Entscheidungsprozesse verfügbar sind.
Dieses Lab dauert ungefähr 20 Minuten.
Bereitstellen eines Azure Databricks-Arbeitsbereichs
Tipp: Wenn Sie bereits über einen Azure Databricks-Arbeitsbereich verfügen, können Sie dieses Verfahren überspringen und Ihren vorhandenen Arbeitsbereich verwenden.
Diese Übung enthält ein Skript zum Bereitstellen eines neuen Azure Databricks-Arbeitsbereichs. Das Skript versucht, eine Azure Databricks-Arbeitsbereichsressource im Premium-Tarif in einer Region zu erstellen, in der Ihr Azure-Abonnement über ein ausreichendes Kontingent für die in dieser Übung erforderlichen Computekerne verfügt. Es wird davon ausgegangen, dass Ihr Benutzerkonto über ausreichende Berechtigungen im Abonnement verfügt, um eine Azure Databricks-Arbeitsbereichsressource zu erstellen. Wenn das Skript aufgrund unzureichender Kontingente oder Berechtigungen fehlschlägt, können Sie versuchen, einen Azure Databricks-Arbeitsbereich interaktiv im Azure-Portal zu erstellen.
-
Melden Sie sich in einem Webbrowser am Azure-Portal unter
https://portal.azure.com
an. -
Verwenden Sie rechts neben der Suchleiste oben auf der Seite die Schaltfläche [>_], um eine neue Cloud Shell-Instanz im Azure-Portal zu erstellen. Wählen Sie eine PowerShell-Umgebung aus, und erstellen Sie Speicher, falls Sie dazu aufgefordert werden. Die Cloud Shell bietet eine Befehlszeilenschnittstelle in einem Bereich am unteren Rand des Azure-Portals, wie hier gezeigt:
Hinweis: Wenn Sie zuvor eine Cloud Shell erstellt haben, die eine Bash-Umgebung verwendet, ändern Sie diese mithilfe des Dropdownmenüs oben links im Cloud Shell-Bereich zu PowerShell.
-
Beachten Sie, dass Sie die Größe der Cloud Shell durch Ziehen der Trennzeichenleiste oben im Bereich ändern können oder den Bereich mithilfe der Symbole —, ◻ und X oben rechts minimieren, maximieren und schließen können. Weitere Informationen zur Verwendung von Azure Cloud Shell finden Sie in der Azure Cloud Shell-Dokumentation.
-
Geben Sie im PowerShell-Bereich die folgenden Befehle ein, um dieses Repository zu klonen:
rm -r mslearn-databricks -f git clone https://github.com/MicrosoftLearning/mslearn-databricks
-
Nachdem das Repository geklont wurde, geben Sie den folgenden Befehl ein, um das Skript setup.ps1 auszuführen, das einen Azure Databricks-Arbeitsbereich in einer verfügbaren Region bereitstellt:
./mslearn-databricks/setup.ps1
-
Wenn Sie dazu aufgefordert werden, wählen Sie aus, welches Abonnement Sie verwenden möchten (dies geschieht nur, wenn Sie Zugriff auf mehrere Azure-Abonnements haben).
-
Warten Sie, bis das Skript abgeschlossen ist. Dies dauert in der Regel etwa 5 Minuten, in einigen Fällen kann es jedoch länger dauern. Während Sie warten, lesen Sie den Artikel Einführung in Delta Lake in der Azure Databricks-Dokumentation.
Erstellen eines Clusters
Azure Databricks ist eine verteilte Verarbeitungsplattform, die Apache Spark-Cluster verwendet, um Daten parallel auf mehreren Knoten zu verarbeiten. Jeder Cluster besteht aus einem Treiberknoten, um die Arbeit zu koordinieren, und Arbeitsknoten zum Ausführen von Verarbeitungsaufgaben. In dieser Übung erstellen Sie einen Einzelknotencluster , um die in der Lab-Umgebung verwendeten Computeressourcen zu minimieren (in denen Ressourcen möglicherweise eingeschränkt werden). In einer Produktionsumgebung erstellen Sie in der Regel einen Cluster mit mehreren Workerknoten.
Tipp: Wenn Sie bereits über einen Cluster mit einer Runtime 13.3 LTS oder einer höheren Runtimeversion in Ihrem Azure Databricks-Arbeitsbereich verfügen, können Sie ihn verwenden, um diese Übung abzuschließen und dieses Verfahren zu überspringen.
-
Navigieren Sie im Azure-Portal zur Ressourcengruppe msl-xxxxxxx, die vom Skript erstellt wurde (oder zur Ressourcengruppe, die Ihren vorhandenen Azure Databricks-Arbeitsbereich enthält).
-
Wählen Sie die Ressource Ihres Azure Databricks-Diensts aus (sie trägt den Namen databricks-xxxxxxx, wenn Sie das Setupskript zum Erstellen verwendet haben).
-
Verwenden Sie auf der Seite Übersicht für Ihren Arbeitsbereich die Schaltfläche Arbeitsbereich starten, um Ihren Azure Databricks-Arbeitsbereich auf einer neuen Browserregisterkarte zu öffnen. Melden Sie sich an, wenn Sie dazu aufgefordert werden.
Tipp: Während Sie das Databricks-Arbeitsbereichsportal verwenden, werden möglicherweise verschiedene Tipps und Benachrichtigungen angezeigt. Schließen Sie diese, und folgen Sie den Anweisungen, um die Aufgaben in dieser Übung auszuführen.
-
Wählen Sie zunächst in der Randleiste auf der linken Seite die Aufgabe (+) Neu und dann Cluster aus.
- Erstellen Sie auf der Seite Neuer Cluster einen neuen Cluster mit den folgenden Einstellungen:
- Clustername: Cluster des Benutzernamens (der Standardclustername)
- Richtlinie: Unrestricted
- Clustermodus: Einzelknoten
- Zugriffsmodus: Einzelner Benutzer (Ihr Benutzerkonto ist ausgewählt)
- Databricks-Runtimeversion: 13.3 LTS (Spark 3.4.1, Scala 2.12) oder höher
- Photonbeschleunigung verwenden: Ausgewählt
- Knotentyp: Standard_D4ds_v5
- Beenden nach 20 Minuten Inaktivität
-
Warten Sie, bis der Cluster erstellt wurde. Es kann ein oder zwei Minuten dauern.
Hinweis: Wenn Ihr Cluster nicht gestartet werden kann, verfügt Ihr Abonnement möglicherweise über ein unzureichendes Kontingent in der Region, in der Ihr Azure Databricks-Arbeitsbereich bereitgestellt wird. Details finden Sie unter Der Grenzwert für CPU-Kerne verhindert die Clustererstellung. In diesem Fall können Sie versuchen, Ihren Arbeitsbereich zu löschen und in einer anderen Region einen neuen zu erstellen. Sie können einen Bereich als Parameter für das Setupskript wie folgt angeben:
./mslearn-databricks/setup.ps1 eastus
Erstellen eines Notebook und Erfassen von Daten
-
Verwenden Sie in der Randleiste den Link ** (+) Neu, um ein **Notebook zu erstellen. Wählen Sie in der Dropdownliste Verbinden Ihren Cluster aus, wenn er noch nicht ausgewählt ist. Wenn der Cluster nicht ausgeführt wird, kann es eine Minute dauern, bis er gestartet wird.
-
Geben Sie in der ersten Zelle des Notebooks den folgenden Code ein, der mit Shellbefehlen die Datendateien von GitHub in das von Ihrem Cluster verwendete Dateisystem herunterlädt.
%sh rm -r /dbfs/FileStore mkdir /dbfs/FileStore wget -O /dbfs/FileStore/sample_sales_data.csv https://github.com/MicrosoftLearning/mslearn-databricks/raw/main/data/sample_sales_data.csv
-
Verwenden Sie Menüoption ▸ Zelle Ausführen links neben der Zelle, um sie auszuführen. Warten Sie dann, bis der vom Code ausgeführte Spark-Auftrag, abgeschlossen ist.
Automatisieren der Datenverarbeitung mit Azure Databricks-Aufträgen
-
Erstellen Sie ein neues Notebook, und benennen Sie es Datenverarbeitung, um die Identifizierung später zu erleichtern. Es wird als Aufgabe verwendet, um den Datenerfassungs- und Verarbeitungsworkflow in einem Databricks-Auftrag zu automatisieren.
-
Führen Sie in der ersten Zelle des Notebooks den folgenden Code aus, um das Dataset in einen Datenframe zu laden:
# Load the sample dataset into a DataFrame df = spark.read.csv('/FileStore/*.csv', header=True, inferSchema=True) df.show()
-
Geben Sie in einer neuen Zelle den folgenden Code ein, um Umsatzdaten nach Produktkategorie zu aggregieren:
from pyspark.sql.functions import col, sum # Aggregate sales data by product category sales_by_category = df.groupBy('product_category').agg(sum('transaction_amount').alias('total_sales')) sales_by_category.show()
-
Verwenden Sie in der Randleiste den Link (+) Neu, um einen Auftrag zu erstellen.
-
Geben Sie einen Namen für die Aufgabe an, und geben Sie das Notebook an, das Sie als Quelle der Aufgabe im Feld Pfad erstellt haben.
-
Wählen Sie Aufgabe erstellen.
-
Im rechten Bereich können Sie unter Zeitplan den Befehl Trigger hinzufügen auswählen und einen Zeitplan für die Ausführung des Auftrags einrichten (z. B. täglich, wöchentlich). Für diese Übung werden wir sie jedoch manuell ausführen.
-
Wählen Sie Jetzt ausführen aus.
-
Wählen Sie im Auftragsbereich die Registerkarte Ausführen aus, und überwachen Sie die Ausführung des Auftrags.
-
Nachdem der Auftrag erfolgreich ausgeführt wurde, können Sie ihn in der Liste „Ausführen“ auswählen und die Ausgabe überprüfen.
Sie haben die Erfassung und Verarbeitung von Daten mithilfe von Azure Databricks Jobs erfolgreich eingerichtet und automatisiert. Sie können diese Lösung jetzt skalieren, um komplexere Datenpipelines zu verarbeiten und in andere Azure-Dienste für eine robuste Datenverarbeitungsarchitektur zu integrieren.
Bereinigung
Wählen Sie zunächst im Azure Databricks-Portal auf der Seite Compute Ihren Cluster und dann ■ Beenden aus, um ihn herunterzufahren.
Wenn Sie die Erkundung von Azure Databricks abgeschlossen haben, löschen Sie die erstellten Ressourcen, um unnötige Azure-Kosten zu vermeiden und Kapazität in Ihrem Abonnement freizugeben.